Selamat datang

Get Gifs at CodemySpace.com

Sabtu, 30 Mei 2009

Tokoh - tokoh Fisika Klasik ( diambil dari http:/www.gurumuda.com )

Galileo Galilei dilahirkan di Pisa, Tuscany, Italia, pada tanggal 15 Februari 1564. Sebagai seorang matematikawan, ayahnya berharap Galileo menjadi seorang dokter gaji dokter sangat besar dibandingkan dengan matematikawan. Mengikuti kehendak ayahnya, Galileo masuk jurusan kedokteran, Universitas Pisa. Karena merasa bosan dengan ilmu kedokteran, Galileo mempelajari matematika pada seorang guru di istana Tuscana, yakni Ostillo Ricci. Ketika berusia 21 tahun, Galileo berhenti kuliah karena kekurangan biaya. Ketika keluar, ia ditawarkan untuk mengajar matematika pada Universitas Pisa. Selanjutnya, Galileo pindah ke Universitas Padua tahun 1592 untuk mengajar astronomi, geometri dan mekanika sampai tahun 1960. pada massa ini ia menghasilkan beberapa penemuan penting.

(more…)

  • Comments Off
  • Joseph John Thomson

    Joseph John Thomson (1856-1940) ialah seorang ilmuwan yang lahir di Cheetham Hill, di mana ia diangkat sebagai profesor fisika eksperimental sejak 1884. Penelitiannya membuahkan penemuan elektron. Thomson mengetahui bahwa gas mampu menghantar listrik. Ia menjadi perintis ilmu fisika nuklir. Thomson memenangkan Hadiah Nobel Fisika 1906.

    (more…)

    Alfred Nobel

    Alfred Nobel dilahirkan pada tanggal 21 oktober 1883, di Stockholm, Swedia. Alfred dan kedua saudaranya, Robert, Ludvig dan Emil memperoleh pendidikan dari guru privat. Pengetahuan yang diajarkan meliputi ilmu alam, bahasa dan sastra. Pada usia 17 tahun, Alfred telah menguasai bahasa Swedia, Rusia, Perancis, Inggris dan Jerman. Alfred sangat tertarik di bidang bahasa, kimia dan fisika. Alfred akhirnya dikirimkan oleh ayahnya ke luar negeri untuk belajar kimia dan menjadi insinyur kimia. Di Paris, Alfred bekerja di laboratorium pribadi kimiawan terkenal, profesor TJ Pelouze. Di sana ia berkenalan dengan kimiawan Italia, Ascanio Sobrero. Alfred sangat tertarik dengan nitrogliserin, cairan berdaya ledak tinggi yang ditemukan oleh Sobrero, yang dianggapnya bermanfaat dalam pembangunan.

    (more…)

    Michael Faraday

    Faraday dilahirkan pada tanggal 22 september 1791 di Newington, Surrey, dekat London. Faraday berasal dari keluarga miskin dan ia hanya mengenyam sedikit pendidikan. Hal ini tidak membuatnya minder dan patah semangat. Ketika Faraday berusia 14 tahun, ia bekerja di sebuah perusahan penjilidan buku dan menjadi penjilid dan penjual buku. Kesempatan ini dimanfaatkan oleh Faraday untuk membaca banyak buku dan sejak saat itu ia mulai tertarik dengan ilmu fisika dan kimia.

    (more…)

    Christiaan Huygens


    Lahir yang di Denhag, Belanda, pada 14 April 1629, Christiaan Huygens adalah putra Constantijn Huygens. Ia merupakan ahli matematika dan fisika dan dikaitkan dengan Revolusi Sains. Christiaan dikenal untuk perannya dalam pengembangan kalkulus modern dan argumennya yang terkenal mengenai sinar yang terdiri atas gelombang-gelombang.

    (more…)

    Methods of Liquid Waste Treatment

    Sewage Treatment

    A high BOD indicates the prescence of excess amounts of organic carbon. Oxygen depletion is a consequence of adding wastes with high BOD values to aquatic ecosystems. The higher the BOD of a source of wastes the higher the polluting power of that waste. BOD's of certain wastes are listed in the table below.

    Type of Waste

    BOD(mg/L)

    Domestic Sewage

    200-600

    Slaughterhouse Wastes

    1000-4000

    Cattle Shed Effluents

    20000

    Vegetable Processing

    200-5000



    There are numerous ways to reduce the BOD of waste before discharging it into the water. Treatment of the wastes is aimed at removing organic material, human pathogens, and toxic chemicals.

    Primary sewage treatment involves physical seperation to lower the BOD of the waste. Suspended solids are removed in this step through the use of settling tanks. Primary treatment usually removes from 30% to 40% of the BOD from typical domestic sewage. Secondary treatment uses microbial degradation to reduce the concentration of organic compounds furthur; it involves microbial processes which can be aerobic or anaerobic. The combined use of primary and secondary treatment reduces approximately 80% to 90% of the BOD. However, because secondary treatment involves microorganisms it is extremely sensitive to toxic chemicals. Finally, tertiary treatment uses chemicals to remove inorganic compounds and pathogens.

     

    Oxidation Ponds

    Oxidation Ponds are also known as stabilization ponds or lagoons. They are used for simple secondary treatment of sewage effluents. Within an oxidation pond heterotrophic bacteria degrade organic matter in the sewage which results in production of cellular material and minerals. The production of these supports the growth of algae in the oxidation pond. Growth of algal populations allows furthur decomposition of the organic matter by producing oxygen. The production of this oxygen replenishes the oxygen used by the heterotrophic bacteria. Typically oxidation ponds need to be less than 10 feet deep in order to support the algal growth. In addition, the use of oxidation ponds is largely restricted to warmer climate regions because they are strongly influenced by seasonal temperature changes. Oxidation ponds also tend to fill, due to the settling of the bacterial and algal cells formed during the decomposition of the sewage. Overall, oxidation ponds tend to be inefficient and require large holding capacities and long retention times. The degradation is relatively slow and the effluents containing the oxidized products need to be periodically removed from the ponds. An oxidation pond can be seen in the figure below.

     
    Oxidation Pond
     

    Trickling Filter

    The trickling filter system is relatively simple and inexpensive. It is an aerobic sewage treatment method in which the sewage is distributed by a revolving sprinkler suspended over a bed of porous material as seen in the Figure below.







     
     
     
     
     
     
     
     

    Trickling Filter

    The sewage slowly moves through the porous bed and the effluent is collected at the bottom. This porous material becomes coated with a dense slimy bacterial growth which provides a home for a heterogeneous microbial community which includes bacteria, fungi, and protozoa as well as other organisms. As the sewage drains through the porous bed, this microbial community absorbs and breaks down dissolved organic nutrients in the sewage; this reduces the BOD. Aeration of the sewage occurs by the movement of air through the porous bed. The sewage may need to be recirculated several times through the filter in order to reduce the BOD sufficiently. One dissadvantage to this system is that an excess amount of nutrients produces an excessive amount of slime on the bed which in turn reduces aeration, leading to the need to renew the porous bed. Cold winter temperatures also reduce the effectiveness of this method in outdoor treatment facilities.

    Activated Sludge

    Activated Sludge is a widely used aerobic method of sewage treatment. After primary settling, the waste stream is brought to an aeration tank. Air is put in and/or there is mechanical stirring which provides aeration of the waste. Sludge from a previous run is usually reintroduced to the tanks to provide microorganisms. This is why it is called activated sludge. During the period in the aeration tank, large developments of heterotrophic organisms occur. In the activated sludge tank the bacteria occur in free suspension and as aggregates or flocs. Extensive microbial metabolism of organic compunds in the sewage results in the production of new microbial biomass. Most of this biomass becomes associated with flocs that can be removed from suspension by settling. A portion of the settled sewage sludge is recycled and the remainder must be treated by composting or anaerobic digestion. Combined with primary settling, activated sludge reduces the BOD by 85% to 90%. It also drastically reduces the number of intestinal pathogens. An illustration of an aeration basin is shown below.

    Aeration Basin

     
     

    Anaerobic Digestors

    Anaerobic digestors are large fermentation tanks which are continuously operated under anaerobic conditions, as seen below.

     
     
     
     
     
     
     
    Anaerobic Sludge Digestor
     
     

    Anaerobic decomposition could be used for direct treatment of sewage, but it is economically favorable to treat the waste aerobically. Large-scale anaerobic digestors are usually used for processing of the sludge produced by primary and secondary treatments. It is also used for the treatment of industrial effluents which have very high BOD levels. The mechanisms for mechanical mixing, heating, gas collection, sludge addition and removal of stabilized sludge are incorporated into the design of large-scale anaerobic digestors. Anaerobic digestion uses a large variety of nonmethanogenic, obligately, or facultatively anaerobic bacteria. In the first part of the process, complex organic materials are broken down and in the next step, methane is generated. The final products of anaerobic digestion are approximately 70% methane and 30% carbon dioxide, microbial biomass and a nonbiodegradable residue.

    Tertiary Treatment

    The treatment processes used to reduce the BOD of sewage waste are secondary treatment processes. Tertiary treatment is any practice beyond secondary treatment and is designed to remove nonbiodegradable organic pollutants and mineral nutrients such as nitrogen and phosphorus salts. For tertiary treatment, activated carbon filters are commonly used.

    Disinfection

    Disinfection is the final step in the sewage treatment process and is designed to kill enteropathogenic bacteria and viruses that were not eliminated during the previous stages of treatment. Disinfection is commonly done by chlorination with chlorine gas or hypochlorite. Chlorine gas reacts with water to yield hypochlorous and hydrochloric acids which are the actual disinfectants. A disadvantage of using chlorination for disinfection is the formation of disinfection by-products, such as chlorinated hydrocarbons. Chlorinated hydrocarbons are toxic and difficult to mineralize. Trihalomethanes may also be formed such as chloroform and bromoform, which are suspected carcinogens. Ozonation is an alternative to chlorination, which uses ozone as the oxidant. This however, is more expensive. Currently, alternative disinfection processes are being sought.

    Back

    Reference: Principles of Microbiology, R.M. Atlas, Mosby-Year, 1995

    Created by Gianna Aiezza and Meredith Streeter

    Kamis, 28 Mei 2009

    Data NUPTK SMKN 9 Ska

    DAFTAR NUPTK SMKN 9 Surakarta
    INSTANSI_INDUK NAMA ST_VERSION PEG_NUPTK PEG_NUPTK_KETERANGAN
    SMK N 9 SKA A. LAMANI 2=DITERIMA 6533734637200002
    SMK N 9 SKA ABRI MARTONO 2=DITERIMA 7651746648200002
    SMK N 9 SKA ADE ARIYONO 2=DITERIMA 4958753655200002
    SMK N 9 SKA AGUNG PRASETYO 2=DITERIMA 6261744646200003
    SMK N 9 SKA AGUS SASMITO 2=DITERIMA 0135736638200013
    SMK N 9 SKA A AGUNG JUWANA BN 2=DITERIMA 3162744646200003
    SMK N 9 SKA ANANG SYARONI 2=DITERIMA 5739733635200002
    SMK N 9 SKA ANIK SURDIYANI 2=DITERIMA 7937740641300012
    SMK N 9 SKA ARI BUDININGSIH 2=DITERIMA 1154743645300003
    SMK N 9 SKA ARI WINARSIH 2=DITERIMA 6557737639300022
    SMK N 9 SKA ATIEK RACHMAWATI 2=DITERIMA 3360758659300053
    SMK N 9 SKA BAMBANG KUSNENDAR 2=DITERIMA 8344737639200003
    SMK N 9 SKA BUDI SUSANTO 2=DITERIMA 6634745647200012
    SMK N 9 SKA BUDI SUTRISNO 2=DITERIMA 2838743643200002
    SMK N 9 SKA DALUT HERI PRASETYOKO 2=DITERIMA 9848741643200042
    SMK N 9 SKA DANANG SUPRIYANTO 2=DITERIMA 5537759661200003
    SMK N 9 SKA DARYANA 2=DITERIMA 2536742643200012
    SMK N 9 SKA DEWI CAHYUNINGDARI 5=DITOLAK
    Double Counting - Sudah ada NUPTK : 0953757658300012 di SMA PRAWIRA MARTA KARTASURA
    SMK N 9 SKA DJOEMADI 2=DITERIMA 5140748652200003
    SMK N 9 SKA DWI EKO PURWANTO 2=DITERIMA 3355747651200003
    SMK N 9 SKA DWI SISWANTO 2=DITERIMA 6437742644200062
    SMK N 9 SKA DWI SUSENO 2=DITERIMA 0539743646200013
    SMK N 9 SKA DYAH PURWANI 2=DITERIMA 6954760662300052
    SMK N 9 SKA ENI DWI ASTUTI 5=DITOLAK
    Double Counting - Sudah ada NUPTK : 2650756656300002 di SMK KRIYA SAHID
    SMK N 9 SKA GUNAWAN SUDARMAJI 2=DITERIMA 6441742646200003
    SMK N 9 SKA HANUNG ROSIFAH 2=DITERIMA 7738745647300012
    SMK N 9 SKA HARJITA TUR BUDIARTA 2=DITERIMA 3333747650200013
    SMK N 9 SKA HARYANI SRI MURWANI 2=DITERIMA 7559731633300003
    SMK N 9 SKA HENI WINARSIH 2=DITERIMA 3236758660300093
    SMK N 9 SKA HERI SYAIFUDIN 2=DITERIMA 6033763666200013
    SMK N 9 SKA HERU PRASTYO 2=DITERIMA 8562760662200023
    SMK N 9 SKA HUDIANARTO 2=DITERIMA 0436732636200012
    SMK N 9 SKA INDRIYANI DEWI 2=DITERIMA 1461740640300003
    SMK N 9 SKA IRIANTO 2=DITERIMA 6558740642200003
    SMK N 9 SKA ISMU 2=DITERIMA 4557743646200002
    SMK N 9 SKA JAKA PRAMANA 2=DITERIMA 1547744645200003
    SMK N 9 SKA JAREK WARSITO 2=DITERIMA 4458738640200002
    SMK N 9 SKA JOKO AGUS PAMBUDI 2=DITERIMA 3153744646200003
    SMK N 9 SKA JOKO MULATO 2=DITERIMA 7652753655200002
    SMK N 9 SKA JOKO SUYATNO 2=DITERIMA 6750745648200002
    SMK N 9 SKA JULIANI WIDAJANTI S 2=DITERIMA 1055748649200013
    SMK N 9 SKA KRISTIYANTO 2=DITERIMA 2539747652200002
    SMK N 9 SKA MARGIYONO 2=DITERIMA 9341740641200003
    SMK N 9 SKA MARNO 2=DITERIMA 8849737639200002
    SMK N 9 SKA MUNAJAT MAMAN SURYAMAN 2=DITERIMA 7433747649200003
    SMK N 9 SKA MURNI SUPATMI 2=DITERIMA 9736754655300002
    SMK N 9 SKA MURYATI 2=DITERIMA 1333759660300083
    SMK N 9 SKA NGATIMIN 2=DITERIMA 1036743647200013
    SMK N 9 SKA NUNIK NULADANI 2=DITERIMA 3335749651300063
    SMK N 9 SKA NUR SETYO PUSPITO 2=DITERIMA 5356757659200003
    SMK N 9 SKA NURYADI 2=DITERIMA 0947757659200012
    SMK N 9 SKA PARDI 2=DITERIMA 2646743646200012
    SMK N 9 SKA PARYATNO 2=DITERIMA 4734745648200012
    SMK N 9 SKA PRIYO HANDOKO 2=DITERIMA 7260745647200003
    SMK N 9 SKA PUJI HASTUTININGSIH 2=DITERIMA 0340755657300013
    SMK N 9 SKA PURWANTO 2=DITERIMA 5563741643200103
    SMK N 9 SKA RACHEL ENDANG KRISTANTI 2=DITERIMA 7859746649300002
    SMK N 9 SKA RAHARJA SIGIT MULYADI 2=DITERIMA 2040744646200013
    SMK N 9 SKA RITA MEI WULANDARI 2=DITERIMA 3849745646300002
    SMK N 9 SKA RIVI RUMIANTO 2=DITERIMA 5455744646200003
    SMK N 9 SKA RIYANTO HADI 2=DITERIMA 6652742643200032
    SMK N 9 SKA ROMDHONIEK 2=DITERIMA 1053730633200003
    SMK N 9 SKA SANTOSO 2=DITERIMA 5559745649200012
    SMK N 9 SKA SARAH DAHLIA 2=DITERIMA 1244743644300013
    SMK N 9 SKA SARDI 2=DITERIMA 4847745647200022
    SMK N 9 SKA SIKIS 2=DITERIMA 2638726627200002
    SMK N 9 SKA SITI UMARWATI 2=DITERIMA 4751736638300002
    SMK N 9 SKA SRI ASTUTIK 2=DITERIMA 7135747649300013
    SMK N 9 SKA SRI NURCAYO 2=DITERIMA 3436736637200002
    SMK N 9 SKA SRI RAHAYU 2=DITERIMA 9936738639300002
    SMK N 9 SKA SRI SULASTRI 2=DITERIMA 7962736638300002
    SMK N 9 SKA SUDARSO 2=DITERIMA 8049725627200033
    SMK N 9 SKA SUDARTO 2=DITERIMA 4939730631200002
    SMK N 9 SKA SUDARTO 2=DITERIMA 0837742643200072
    SMK N 9 SKA SUGENG 2=DITERIMA 8738744646200002
    SMK N 9 SKA SUGENG MULYANTO 2=DITERIMA 3538754656200002
    SMK N 9 SKA SUGENG WIYONO 2=DITERIMA 8949741642200002
    SMK N 9 SKA SUKASNO 2=DITERIMA 7641747650200002
    SMK N 9 SKA SULARNO 2=DITERIMA 5538741643200002
    SMK N 9 SKA SULISTYO BUDIWAHYONO 2=DITERIMA 4734741643200012
    SMK N 9 SKA SUMARDI 2=DITERIMA 1853743643200002
    SMK N 9 SKA SUPARNO 2=DITERIMA 5544732634200002
    SMK N 9 SKA SUPONO 2=DITERIMA 5335740641200003
    SMK N 9 SKA SURATNO 2=DITERIMA 5353745647200003
    SMK N 9 SKA SUROTO 2=DITERIMA 8736747649200012
    SMK N 9 SKA SUSILOWATI 2=DITERIMA 7256746648300053
    SMK N 9 SKA SUTRISNO 2=DITERIMA 5455747651200003
    SMK N 9 SKA SUWARTO YASMIN 2=DITERIMA 6554741644200003
    SMK N 9 SKA TEGUH KARDITO 2=DITERIMA 1753756661200002
    SMK N 9 SKA TIES SETYANINGSIH 2=DITERIMA 9856744646300002
    SMK N 9 SKA TITIK SUHANDAJATININGSIH 2=DITERIMA 1549745648300073
    SMK N 9 SKA TOTO BUDAYANTO 2=DITERIMA 2245750652300073
    SMK N 9 SKA TUGIYATNO 2=DITERIMA 2035744646200013
    SMK N 9 SKA TURMUDZI 2=DITERIMA 7347737639200003
    SMK N 9 SKA WAHYONO 2=DITERIMA 9547762665200002
    SMK N 9 SKA WAHYU NUR AINI 2=DITERIMA 2751754656300002
    SMK N 9 SKA WIJAYANTI SIH ANDAYANI 2=DITERIMA 2650741643300012
    SMK N 9 SKA WIRANTO 2=DITERIMA 5645726628200002
    SMK N 9 SKA Y. SUPARJI 2=DITERIMA 1454732634200013
    SMK N 9 SKA YEKTI WINARNI 2=DITERIMA 9959744646300012
    SMK N 9 SKA ZUMRONAH 2=DITERIMA 6340736637300023





    SMA MURNI AGUS PUJOPURWOKO 2=DITERIMA 9152733636200013
    SMA MURNI ARI WIDYANINGSIH 2=DITERIMA 0861757659300052
    SMA MURNI CHATARINA WIDOWATI 2=DITERIMA 9052751653300073
    SMA MURNI DYAH SRI BUDI HERAWATI 2=DITERIMA 9649757658300072
    SMA MURNI ENY WINARTI 2=DITERIMA 8548754656300032
    SMA MURNI HARLS EVAN R. SIAHAAN 2=DITERIMA 3252752653200013
    SMA MURNI ISKAK 2=DITERIMA 3534741643200062
    SMA MURNI ISNA MARDHIYATI DEWI 2=DITERIMA 7439751653300073
    SMA MURNI JAROT JOKO SRIMULYO 2=DITERIMA 7856735636200002
    SMA MURNI KUSTIJOWARNO 2=DITERIMA 8136748650200043
    SMA MURNI LINA MAHANANI 2=DITERIMA 4239752653300033
    SMA MURNI MARIA SRI KUSWARDANI 2=DITERIMA 8340750652300093
    SMA MURNI MUNAWAR SHODIQ 2=DITERIMA 4756753655200032
    SMA MURNI NINIK SUSPRIYATI 2=DITERIMA 7554750652300083
    SMA MURNI PARTINO 2=DITERIMA 0043742646200043
    SMA MURNI RIPNO 2=DITERIMA 3233731632200013
    SMA MURNI SATYO BUDI SANTOSO 2=DITERIMA 2634752653200032
    SMA MURNI SRI SUMARYAMTI 2=DITERIMA 1841745646300022
    SMA MURNI SUDARNO 2=DITERIMA 1946756658200042
    SMA MURNI SUGENG RIYANTO 2=DITERIMA 1535741643200063
    SMA MURNI SUKINO 2=DITERIMA 2055750654200003
    SMA MURNI SUPRAPTO 2=DITERIMA 0847738639200062
    SMA MURNI TOTO BUDAYANTO 5=DITOLAK
    Double Counting -
    SMA MURNI WAWAN 2=DITERIMA 4137755655200003
    SMA MURNI YENI INDRIASTUTI 2=DITERIMA 8436755657300032










    Rabu, 27 Mei 2009

    65. NUPTK
    KOTA SURAKARTA D_03_JAWA TENGAH_KOTA SURAKARTA.XLS
    Website : www.smkn9-solo.sch.id
    Senja itu
    Flamboyan berguguran
    Seorang dara memandang
    Terpukau ...

    Satu-satu
    Daunnya berjatuhan
    Berserakan di pangkuan bumi

    Bunga flamboyan itu diraihnya
    Wajahnya terlihat sayu
    Flamboyan berguguran
    Berjatuhan, berserakan

    Sejak itu sang dara berharapkan
    Esok lusa kan bersemi kembali


    More Bimbo
    Bimbo

    Lirik lagu salah?
    Koreksi di sini

    Senin, 25 Mei 2009


    Ya ayyuhaladina amanu tubu illallah taubatan nasuha, ngasa robakum yukafirngankum saitaikum wayudhilukum jannatin tajrim min tahtihal anhar .....

    Minggu, 25 Januari 2009

    latihan soal Fisika


    Nah ini foto anak Gue yang galak !!!




    MEDAN MAGNET

    Kerjakan sesuai petunjuk A !

    1. UMPTN 1990.

    Sebuah elektron bergerak searah dengan sumbu y positif dan masuk ke dalam

    Medan magnet homogen sehingga menjalani gerak melingkar seperti pada

    Gambar. Ini menunjukkan bahwa medan magnet searah dengan

    2. UMPTN 1990.

    Sebuah elektron bergerak dengan kecepatan v di dalam medan magnet yang

    Induksi magnetnya B. Jika v ada di dalam bidang xy membentuk sudut 60 derajat

    Dengan sumbu x dan B sejajar dengan sumbu y, maka lintasan elektron berbentuk

    ……….

    a. garis lurus sejajar sumbu y

    b. garis lurus sejajar sumbu x

    c. lingkaran sejajar sumbu y

    d. lingkaran sejajar sumbu x

    e. spiral dengan sumbunya sejajar sumbu y

    3. UMPTN 1990.

    Dua buah partikel massanya m1 : m2 = 2 : 1 dan muatannya q1 : q2 = 2 : 1.

    Kedua partikel itu bergerak melingkar dalam bidang yang tegak lurus medan

    Magnetik homogen. Bila besar momentum kedua partikel itu sama, maka

    Perbandingan jari-jari orbit partikel-partikel itu r1 : r2 adalah ……

    a. 4 : 1 d. 1 : 2

    b. 2 : 1 e. 1 : 4

    c. 1 : 1

    4. EBTANAS 1990.

    Saat elektron memasuki medan magnet, electron Mendapat gaya Lorentz

    yang searah dengan……

    a. sumbu x positif

    b. sumbu y positif

    c. sumbu z positif

    d. sumbu z negatif

    e. sumbu y negatif

    5. EBTANAS 1990.

    Sebuah kumparan terdiri dari 50 lilitan berbentuk bujur sangkar dengan sisi

    20 Cm berarus listrik 5 A berada dalam medan magnet homogen dari 0,2.10-2

    Wb/m2 sehingga bidangnya tegak lurus terhadap garis gaya magnet. Momen

    Kopel yang terjadi pada kumparan saat bidang kumparan sejajar arah medan

    Magnet tersebut adalah………

    a. 10 Nm

    b. 1 Nm

    c. 0,1 Nm

    d. 0,02 Nm

    e. 0,04 Nm

    6. EBTANAS 1990.

    Suatu penghantar lurus seperti pada gambar di Samping (penghantar terletak pada bidang gambar).Arah medan magnet induksi pada titik

    P adalah……..

    a. menjauhi pembaca tegaklurus bidang gambar

    b. mendekati pembaca tegaklurus bidang gambar

    c. ke atas sejajar dengan penghantar

    d. ke kiri tegaklurus penghantar

    e. ke kanan tegaklurus penghantar

    7. EBTANAS 1990.

    Induksi magnetik di suatu titik yang berjarak a dari kawat lurus panjang berarus

    Listrik I adalah……..

    a. berbanding lurus dengan I dan a

    b. berbanding lurus dengan I dan berbanding terbalik dengan a

    c. berbanding lurus dengan a dan berbanding terbalik dengan I

    d. berbanding terbalik dengan I dan a

    e. berbanding terbalik dengan kuadrat I dan kuadrat a

    8. EBTANAS 1989.

    Arah arus induksi dalam suatu penghantar semikonduktor sehingga menghasilkan

    Medan magnet yang melawan perubahan garis gaya yang menimbulkannya.

    Ungkapan ini adalah bunyi hukum………

    a. Oersted c. Lorentz e. Faraday

    b. Biot Savart d. Lenz

    9. EBTANAS 1989.

    Besarnya induksi magnetik di titik yang berjarak 2 cm dari kawat lurus yang

    Panjang dan berarus listrik 30 ampere adalah………

    a. 3 . 10 -4 Weber/m2 d. 6 . 10 –4 Weber/m2

    b. 3 . 10 –2 Weber/m2 e. 3 . 10 –1 Weber/m2

    c. 6 . 19 –3 Weber/m2

    10. EBTANAS 1989.

    Sebuah titik berada di dekat penghantar lurus panjang berarus listrik.Jika jarak

    Titik ke penghantar dilipatduakan sedang kuat arusnya dijadikan setengah kali

    Semula, maka induksi magnetik di titik tersebut menjadi……

    a. ¼ kali semula d. 2 kali semula

    b. ½ kali semula e. 4 kali semula

    c. tetap

    berikut latihan soal fisika klas xii